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Yevgeny Kats, Luboš Motl and Megha Padi

Jefferson Physical Laboratory, Harvard University,

Cambridge, MA 02138, U.S.A.

E-mail: padi@fas.harvard.edu

Abstract: We investigate the hypothesis that the higher-derivative corrections always

make extremal non-supersymmetric black holes lighter than the classical bound and self-

repulsive. This hypothesis was recently formulated in the context of the so-called swamp-

land program. One of our examples involves an extremal heterotic black hole in four di-

mensions. We also calculate the effect of general four-derivative terms in Maxwell-Einstein

theories in D dimensions. The results are consistent with the conjecture.

Keywords: Black Holes in String Theory, Superstring Vacua, Black Holes.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep122007068/jhep122007068.pdf

mailto:padi@fas.harvard.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
1
2
(
2
0
0
7
)
0
6
8

Contents

1. Introduction 1

2. Corrections to the Reissner-Nordström black hole 2

3. Corrections to the GHS black hole 5

4. Discussion 7

A. Energy-momentum tensor 7

B. Corrections to the Reissner-Nordström black hole in D dimensions 8

1. Introduction

In view of the seemingly large number of allowed vacua in string theory, it is important to

look for universal properties of these solutions, and see what features of the low-energy field

theory can nevertheless be deduced from string theory. It turns out that such features exist,

and not any low-energy particle content is allowed: Vafa [1] has discussed the possibility of

restrictions related to the finiteness of volume of massless scalar fields, the finiteness of the

number of massless fields, and the rank of the gauge groups. In fact, just the requirement to

include quantum gravity (even if not in the framework of string theory) puts constraints on

the low-energy physics [2 – 11]. Arkani-Hamed et al. [2] considered a theory of a single U(1)

gauge field, and came to the conclusion that the gauge force must be stronger than gravity,

i.e., there must exist charged particles for which the net force is repulsive. Furthermore,

the effective theory breaks down at some scale beneath the Planck scale, and there should

exist a charged particle at or below that scale.

In particular, Arkani-Hamed et al. made a prediction regarding the mass-charge rela-

tion of extremal black holes. Consider a particle with a mass M and a charge Q. For this

particle to be unstable, it must be able to decay into two or more particles whose total

mass is smaller than M and total charge equal to Q. To satisfy these conditions, at least

one of the outgoing particles must have a smaller M/Q ratio than the original particle.

The argument extends to black holes, which are believed to be the low-energy descrip-

tion of elementary particles whose masses are much above the Planck scale. Since it is

unnatural to have an infinite number of exactly stable particles, the mass-charge relation

for extremal black holes M = Q cannot be exact: the M/Q ratio for extremal black holes

should decrease with decreasing Q, so that for every extremal black hole there is another

black hole with a smaller M/Q ratio (see figure 1). Because states with M/Q < 1 must
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Figure 1: The classical mass-charge relation for extremal black holes is represented by the dashed

line; it must be valid in the limit M ≫ MPl. Curve A shows a possible exact mass-charge relation.

Curve B is unacceptable because it would imply an infinite number of states that cannot decay.

exist, the most natural expectation is that the black holes, states with very high values of

M,Q, also satisfy M/Q < 1, although the difference from 1 is tiny.

Since the net force between black holes with M = Q vanishes, the previous argument

also predicts that the net force will become repulsive. This is indeed expected because if

the force were attractive, heavier bound states with a lower M/Q ratio would be possible,

again creating an infinite number of states that cannot decay. While the relation between

the decrease of the mass and the repulsion is trivial in the case of Reissner-Nordström black

holes, the existence of other fields (e.g., the dilaton) makes the two arguments independent.

In this paper we present calculations concerning corrections to the mass-charge rela-

tion of extremal black holes. Section 2 is dedicated to the case of four-derivative terms

affecting Reissner-Nordström black holes (and appendix B extends the result to the case of

D dimensions). Section 3 discusses a heterotic black hole where the additional coupling to

the dilaton must be included. In section 4, we offer conclusions and a list of black objects

that could be investigated.

2. Corrections to the Reissner-Nordström black hole

The Reissner-Nordström black hole is a spherically symmetric static solution with a radial

electric (or magnetic) field, governed by the action:

S =

∫
d4x

√−g

(
R

2κ2
− 1

4
FµνFµν

)
(2.1)
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where κ2 = 8πG. Starting with the most general spherically symmetric static metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2 (2.2)

and looking for a solution with a radial electric field of the form F 01 = E(r), one finds

eν(r) = e−λ(r) = 1 − κ2M

4πr
+

κ2Q2

32π2r2
E(r) =

Q

4πr2
(2.3)

The solution describes a black hole for M ≥
√

2
κ |Q| (otherwise the solution describes a

naked singularity). Black holes with the minimal possible mass M for a given charge Q

are called extremal. In units with κ2 = 2, they satisfy M = |Q| and the horizon radius

r = M/4π = |Q|/4π.

Corrections due to quantum gravity can be represented by higher-order terms in the

effective action. For the purpose of determining the mass of an extremal black hole, we are

interested in the solution near the horizon: r ∼ Q. The unperturbed solution (2.3) implies

that any derivative contributes a factor of order 1/Q, so the Riemann tensor is R ∼ 1/Q2,

and for the electromagnetic field tensor we have F ∼ Q/r2 ∼ 1/Q and ∇F ∼ 1/Q2. Since

Q ≃ M ≫ 1, terms of higher order in R, F , and derivatives are suppressed by powers

of 1/Q, and we may consider just the leading-order corrections. Both terms in (2.1) are

∼ 1/Q2. The leading order (∼ 1/Q4) corrections are:

S =

∫
d4x

√−g

(
R

2κ2
− 1

4
FµνFµν + c1 R2 + c2 RµνR

µν + c3 RµνρσRµνρσ +

+ c4 RFµνFµν + c5 RµνFµρFν
ρ + c6 RµνρσFµνFρσ + c7 (FµνFµν)2

+ c8 (∇µFρσ)(∇µF ρσ) + c9 (∇µFρσ)(∇ρFµσ)

)
(2.4)

We did not include a (∇µFµν)(∇ρFρν) term because (∇µFµν) and (∇ρFρν) vanish in the

unperturbed solution, so variations of this term are proportional to additional powers

of the correction coefficients ci. A similar argument applies to c̃7F
µνFνρF

ρσFσµ, whose

contribution to the equations of motion (to first order in ci) turns out to be equal to half

the contribution of (FµνFµν)2, related to the fact that only F 01 and F 10 are non-zero in

the unperturbed solution. Therefore, in our problem c̃7 can be absorbed in c7.

The solution of the equations of motion for the metric is straightforward [12]. First, one

can note that the spherical symmetry made it possible to express λ(r) and ν(r) explicitly

in terms of Rµν as

e−λ = 1 − κ2M

4πr
− 1

r

∫ ∞

r
dr r2

(
R0

0 − R1
1

2
− R2

2

)
(2.5)

ν = −λ +

∫ ∞

r
dr r

(
R0

0 − R1
1

)
eλ (2.6)

Next, recall Einstein’s equation in the form

Rµν = κ2
(
Tµν − 1

2Tgµν

)
Tµν = − 2√−g

δSmatter

δgµν
(2.7)
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where T = T 0
0 + T 1

1 + T 2
2 + T 3

3 (with T 3
3 = T 2

2 ). Then (2.5) and (2.6) become

e−λ = 1 − κ2M

4πr
− κ2

r

∫ ∞

r
dr r2 T 0

0 (2.8)

ν = −λ + κ2

∫ ∞

r
dr r

(
T 0

0 − T 1
1

)
eλ (2.9)

We take the higher-order terms in the action (2.4) to be a perturbation, treat them as a

part of Smatter, and use the unperturbed solution (2.3) to calculate their corresponding Tµν .

We also vary the action with respect to the gauge field to obtain corrections to Maxwell’s

equations, which modify the contribution of the −1
4FµνFµν term to Tµν . The calculation

of these two contributions to the effective Tµν is presented in appendix A. The corrected

metric in terms of m = M/4π and q = Q/4π is

e−λ = 1 − κ2m

r
+

κ2q2

2r2
+

q2

r6

(
c2

κ4

5

(
−6κ2q2 + 15mκ2r − 20r2

)

+ c3
κ4

5

(
−24κ2q2 + 60κ2mr − 80r2

)
+ c4κ

2
(
−6κ2q2 + 14κ2mr − 16r2

)

+ c5
κ2

5

(
−11κ2q2 + 25κ2mr − 30r2

)
+ c6

κ2

5

(
−16κ2q2 + 35κ2mr − 40r2

)

+ c7

(−4κ2q2

5

)
+ c8

κ2

5

(
6κ2q2 − 15κ2mr + 20r2

)

+ c9
κ2

10

(
6κ2q2 − 15κ2mr + 20r2

))
(2.10)

The mass-charge relation for extremal black holes becomes

κ√
2

M

|Q| = 1 − 2

5q2

(
2c2 + 8c3 +

2c5

κ2
+

2c6

κ2
+

8c7

κ4
− 2c8

κ2
− c9

κ2

)
(2.11)

Then the conjecture of Arkani-Hamed et al. implies that our low-energy effective theory

must satisfy

2c2κ
4 + 8c3κ

4 + 2c5κ
2 + 2c6κ

2 + 8c7 − 2c8κ
2 − c9κ

2 ≥ 0 (2.12)

We performed the same calculation in D spacetime dimensions, and the results are

presented in appendix B.

We can use our results to check whether higher-order terms in the string theory effective

action increase or decrease the mass-charge ratio in certain special cases. A U(1) gauge field

can arise as a subgroup of the E8×E8 or SO(32) gauge group in the low-energy effective

theory of the heterotic string. We would like to consider a black hole charged under this

U(1), while we set the remaining gauge fields and the antisymmetric field strength Hµνρ

to zero. Consider heterotic string theory compactified on a (10 − D)-dimensional torus.

If we are able to stabilize the dilaton, then one possible background is a D-dimensional

Reissner-Nordström black hole. (A black hole that involves the dilaton as well is discussed

in the next section.) The ten-dimensional Lagrangian is [13]:

L =
1

2κ2
10

R − 1

4
FµνFµν +

α′h

16κ2
10

(
RµνρσRµνρσ − 4RµνRµν + R2

)

− 3

64
α′hκ2

10

(
(FµνFµν)2 − 4FµνFνρF

ρσFσµ

)
(2.13)
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The dilaton has been set to a constant φ0 and h ≡ e−κ10φ0/
√

2. Such an assumption may

be physically interpreted as a consequence of a dynamically generated potential for the

dilaton in a particular compactification: the dilaton acquires mass much greater than the

inverse radius of the black hole, its effects may be neglected, while the terms we consider

are preserved. In D = 4, the Gauss-Bonnet combination

RµνρσRµνρσ − 4RµνRµν + R2

is a topological invariant and does not influence the equations of motion. It does have

an effect in other dimensions, where it interestingly cancels the (3D − 7) factor in (B.15).

While the effect of the Gauss-Bonnet terms is to increase the mass, the combination of the

F 4 terms decreases the mass. (Note also that when the F 4 terms are expressed in terms of

(F 2)2 and (FF̃ )2, their coefficients are positive, much like in the Dirac-Born-Infeld action:

this fact is required by the energy conditions or, equivalently, the unitarity [14].) With

c1 = c3 =
hα′

16κ2
c2 = −hα′

4κ2
c7 =

3hα′κ2

64
(2.14)

where we absorbed c̃7 in c7 as explained after eq. (2.4), we obtain

D − 3

D − 2

κ2M2

Q2
= 1 − α′ (D − 3)(2D − 5)h

4(3D − 7)

(
(D − 2)(D − 3)Ω2

D−2

κ2Q2

)1/(D−3)

(2.15)

The overall effect is to lower M/Q for D > 3, as we indeed expect for a theory that includes

quantum gravity.

Interestingly, the leading term in D canceled in (2.15), which might be relevant in large-

D expansions. The reader may also notice that the leading mass correction parametrically

agrees with the relation for perturbative string excitations only in D = 4, where both

relations can be written as

M2 = aQ2 − b (2.16)

where a and b are constants.

3. Corrections to the GHS black hole

In general, the low-energy effective action of the heterotic string includes also the dilaton

field φ, which is sourced by the gauge field:

S =

∫
d4x

√−g
(
R − 2(∇φ)2 − e−2φFµνFµν

)
(3.1)

When the dilaton is present, the Reissner-Nordström metric is no longer a solution to the

equations of motion. Black holes charged under a U(1) gauge field must also carry dilatonic

charge, as was analyzed by Garfinkle et al. (GHS) [15]. A magnetically charged black hole

(F = Q sin θdθ ∧ dϕ) is then described by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r

(
r − Q2 e−2φ0

M

)
dΩ2 (3.2)

e−2φ = e−2φ0

(
1 − Q2 e−2φ0

Mr

)
(3.3)
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where φ0 is the asymptotic value of φ at infinity, which we set to zero, for simplicity. The

black hole has a horizon at r = 2M for M > |Q|/
√

2. The solution for the dilaton implies

that the black hole has a dilatonic charge of D = −Q2/2M , which for the extremal case

reduces to D = −M . The force between two particles with magnetic charge Q, dilatonic

charge D, and mass M , is given by

F =
Q2 − D2 − M2

16πr2
(3.4)

so the net force between two extremal black holes with equal charges vanishes. The argu-

ment of Arkani-Hamed et al. would then predict that higher-order corrections to the mass

and the dilatonic charge would make the mass smaller and the net force repulsive as the

charge Q becomes smaller.

Corrections to the metric and dilaton field of a magnetically-charged GHS black hole

due to the next order terms (R2, F 4, F 2(∇φ)2) in the heterotic string effective action

have been calculated by Natsuume [16]. After eliminating many of the terms by field

redefinitions, he obtained the corrections to leading order in α′ as

L = a
(
RµνρσRµνρσ − 4RµνRµν + R2

)
+ b(F 2)2 + cF 2(∇φ)2 + hRµνρσFµνFρσ (3.5)

The coefficients of RµνρσRµνρσ and RµνρσFµνFρσ, which are invariant under field redefini-

tions, were then taken from the heterotic string calculations [13]: a = α′/8 and h = 0. The

perturbed equations of motion were written down, and a requirement of consistency with

exact results that were obtained for this black hole [17] determined c = α′/2. The value of

b does not affect the correction to the mass. The metric (in the extremal limit) becomes

ds2 = −
(

1 − Q̃

r

)1+ǫ

f2

(
Q̃

r

)
dt2 +

(
1 − Q̃

r

)−1+ǫ

f3

(
Q̃

r

)
dr2 + (3.6)

+ r2

(
1 − Q̃

r

)1+ǫ

f4

(
Q̃

r

)
dΩ2

and the dilaton is given by

e−2φ =

(
1 − Q̃

r

)1+ǫ

f4

(
Q̃

r

)
(3.7)

where Q̃ =
√

2 Q, ǫ = (2b − 1)α′/Q̃2, and

f2(x) = 1 − α′

40Q̃2
x(11x3 + 7x2 + 16x + 38) + g(x) (3.8)

f3(x) = 1 − α′

40Q̃2
x(19x3 + 25x2 + 26x + 42) + g(x) (3.9)

f4(x) = 1 − α′

40Q̃2
x(−9x3 + 7x2 + 16x + 38) + g(x) (3.10)

g(x) =
α′

60Q̃2
bx(15x3 + 32x2 + 57x + 120). (3.11)
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Natsuume found that the mass-charge relation for the extremal black holes (with the

normalization given in our eq. (3.1)) is given by

M =
|Q|√

2

(
1 − α′

40Q2

)
. (3.12)

This agrees with the expectation that the M/Q ratio decreases as the charge Q becomes

smaller.

Furthermore, we can use eq. (3.7) to determine the correction to the dilatonic charge

D. We identify D as the coefficient of the 1/r2 term in dφ/dr and obtain the corrected

dilatonic charge of the extremal black hole as

D = −|Q|√
2

(
1 − α′

40Q2

)
. (3.13)

Since both the mass and the dilatonic charge decrease, the net force (3.4) between the

extremal black holes becomes repulsive, as was conjectured in section 1.

4. Discussion

We have calculated the corrections to the masses of extremal black holes in several back-

grounds. In all examples where we could verify the sign, the sign was negative. This

fact was not guaranteed by the general rules of effective field theory; however, general

arguments exist why such an inequality could follow from the consistency of couplings in

quantum gravity [2].

Other examples of black objects where the inequality could be checked include non-

supersymmetric black holes in type II string theory on Calabi-Yau manifolds and various

black branes. It is desirable to find either a more general proof that the extremal black

holes become lighter in general backgrounds of quantum gravity or a counterexample. We

also conjecture that the first correction to the Bekenstein-Hawking entropy, arising from

higher-derivative terms applied to Wald’s formula, is positive in all cases. We are not aware

of counterexamples; explicit checks or a more general proof could shed some light on the

UV-IR relations in quantum gravity.
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A. Energy-momentum tensor

First order corrections to the energy-momentum tensor Tµν have two contributions: a

correction to the energy-momentum tensor of the −1
4FµνFµν term due to corrections to
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Fµν , and an effective contribution representing the modification of Einstein’s equation by

all the higher-order terms.

To find the first contribution, we vary the action with respect to Aµ to obtain the

corrected Maxwell’s equations:

∇νF
µν = 4c4∇ν(RFµν) + 2c5∇ν(R

µρFρ
ν − RνρFρ

µ) (A.1)

+4c6∇ν(R
αβµνFαβ) + 8c7∇ν(FρσF ρσFµν)

−4c8∇ν¤Fµν − 2c9∇ν∇ρ(∇µF ρν −∇νF ρµ)

We find the first-order correction to Fµν by treating the right hand side as a perturbation

(evaluated with the unperturbed metric and electric field). Since Tµν is quadratic in the

fields, only corrections to F 01 (which is non-zero in the unperturbed solution) are of the

first order in ci.

To find the second contribution to Tµν , we calculate the variation of the higher-order

terms in the action with respect to gµν , which gives

∆Tµν = c1

(
gµνR2 − 4RRµν + 4∇ν∇µR − 4gµν¤R

)
(A.2)

+c2

(
gµνRρσRρσ + 4∇α∇νR

α
µ − 2¤Rµν − gµν¤R − 4Rα

µRαν

)

+c3

(
gµνRαβγδR

αβγδ−4RµαβγRν
αβγ−8¤Rµν +4∇ν∇µR+8Rα

µRαν−8RαβRµανβ

)

+c4

(
gµνRF 2 − 4RFµ

σFνσ − 2F 2Rµν + 2∇µ∇νF
2 − 2gµν¤F 2

)

+c5

(
gµνRκλFκρFλ

ρ − 4RνσFµρF
σρ − 2RαβFαµFβν − gµν∇α∇β(Fα

ρF
βρ)

+ 2∇α∇ν(FµβFαβ) − ¤(FµρFν
ρ)

)

+c6

(
gµνRκλρσFκλFρσ − 6FανF βγRα

µβγ − 4∇β∇α(Fα
µF β

ν)
)

+

+c7

(
gµν(F 2)2 − 8F 2Fµ

σFνσ

)

+c8

(
gµν(∇κFρσ)(∇κF ρσ) − 2(∇µFαβ)(∇νFαβ) − 4(∇αFβµ)(∇αF β

ν)

+ 4∇α(Fνβ∇αFµ
β) + 4∇α(Fνβ∇µFαβ) − 4∇α(Fα

β∇νFµ
β)

)

+c9

(
gµν(∇κFρσ)(∇ρF κσ) − 4(∇µFαβ)(∇αFνβ) − 2(∇αFβµ)(∇βFα

ν)

+ 2∇α(Fνβ∇αFµ
β) + 2∇α(Fνβ∇µFαβ) − 2∇α(Fα

β∇νFµ
β)

)

where we denoted F 2 ≡ FρσF ρσ.

B. Corrections to the Reissner-Nordström black hole in D dimensions

The solution presented in section 2 can be easily generalized to Reissner-Nordstöm black

holes in D spacetime dimensions. (The unperturbed solution is presented in refs. [18]

and [19].) The most general spherically symmetric static metric in D spacetime dimensions

has the form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2
(D−2) (B.1)

– 8 –
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where

dΩ2
(1) = dθ2

0, dΩ2
(i+1) = dθ2

i + sin2 θi dΩ2
(i) 0 ≤ θ0 ≤ 2π, 0 ≤ θi ≤ π

so the metric for the coordinates (t, r, θD−3, θD−2, . . . , θ0) is

gµν = diag
(
−eν(r), eλ(r), r2, r2 sin2 θD−3, . . . , r2 sin2 θD−3 · · · sin2 θ2 sin2 θ1

)
(B.2)

√−g = rD−2 e(ν+λ)/2
D−3∏

i=1

(sin θi)
i (B.3)

The corresponding Christoffel symbols are

Γ0
00 = Γ0

0k = Γ0
11 = Γ0

1k = Γ0
kk′ = 0 Γ0

01 =
ν ′

2
(B.4)

Γ1
00 =

1

2
ν ′eν−λ Γ1

01 = Γ1
0k = Γ1

1k = Γ1
kk′|k′ 6=k = 0 Γ1

11 =
λ′

2
Γ1

kk = −e−λ

r
gkk

Γk
00 = Γk

01 = Γk
0k′ = Γk

11 = Γk
1k′|k′ 6=k = 0 Γk

1k =
1

r
Γk

else not shown

where k, k′ = 2, . . . ,D − 1. The non-zero components of the Ricci tensor are

R0
0 = −e−λ

2

(
ν ′′ +

ν ′2

2
− ν ′λ′

2
+ (D − 2)

ν ′

r

)

R1
1 = −e−λ

2

(
ν ′′ +

ν ′2

2
− ν ′λ′

2
− (D − 2)

λ′

r

)
(B.5)

Rk
k = −e−λ

(
(D − 3)(1 − eλ)

r2
+

ν ′ − λ′

2r

)

R = −e−λ

(
ν ′′ +

ν ′2

2
− ν ′λ′

2
+ (D − 2)(D − 3)

1 − eλ

r2
+ (D − 2)

ν ′ − λ′

r

)
(B.6)

We can then write

R0
0 − R1

1

D − 2
− Rk

k =
D − 3

r2
(e−λ − 1) − λ′e−λ

r
=

(
rD−3(e−λ − 1)

)′

rD−2

rD−3(e−λ − 1) =

∫
dr rD−2

(
R0

0 − R1
1

D − 2
− Rk

k

)

Assuming that the asymptotic behavior at r → ∞ is the Schwarzschild solution, this

becomes

e−λ = 1 − 2κ2M

(D − 2)ΩD−2 rD−3
− 1

rD−3

∫ ∞

r
dr rD−2

(
R0

0 − R1
1

D − 2
− Rk

k

)
(B.7)

where

ΩD−2 =
2π(D−1)/2

Γ[(D − 1)/2]
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is the area of the unit sphere. Similarly,

R0
0 − R1

1 = −(D − 2)
e−λ

2

ν ′ + λ′

r

ν = −λ +
2

D − 2

∫ ∞

r
dr r

(
R0

0 − R1
1

)
eλ (B.8)

Einstein’s equation obtained from the action

S =

∫
dDx

√−g
R

2κ2
+ Smatter (B.9)

can be written as

Rµν = κ2

(
Tµν − T

D − 2
gµν

)
Tµν = − 2√−g

δSmatter

δgµν
(B.10)

and in our case T = T 0
0 + T 1

1 + (D − 2)T k
k . Then (B.7) and (B.8) become

e−λ = 1 − 2κ2M

(D − 2)ΩD−2 rD−3
− 2κ2

(D − 2) rD−3

∫ ∞

r
dr rD−2 T 0

0 (B.11)

ν = −λ +
2κ2

D − 2

∫ ∞

r
dr r(T 0

0 − T 1
1 ) eλ (B.12)

The unperturbed electrically charged solution is

eν = e−λ = 1 − 2

(D − 2)ΩD−2

κ2M

rD−3
+

1

(D − 2)(D − 3)Ω2
D−2

κ2Q2

r2(D−3)

E =
Q

ΩD−2 rD−2
(B.13)

We now consider an action of the form

S =

∫
dDx

√−g

(
R

2κ2
− 1

4
FµνFµν + c1 R2 + c2 RµνRµν + c3 RµνρσRµνρσ +

+ c4 RFµνF
µν + c5 RµνFµρFν

ρ + c6 RµνρσFµνFρσ + c7 (FµνFµν)2

+ c8 (∇µFρσ)(∇µF ρσ) + c9 (∇µFρσ)(∇ρFµσ)

)
(B.14)

By the same procedure as described in the main text, we consider the corrections to the

effective Tµν based on the equations in appendix A, and obtain the mass-charge relation

for extremal black holes

D − 3

D − 2

κ2M2

Q2
= 1 − 2(D − 3)

(D − 2)(3D − 7)

(
(D − 2)(D − 3)Ω2

D−2

κ2Q2

)1/(D−3)

× (B.15)

×
[
(D − 3)(D − 4)2 κ2c1 + (D − 3)(2D2 − 11D + 16)κ2c2+

+ 2(2D3 − 16D2 + 45D − 44)κ2c3 + 2(D − 2)(D − 3)(D − 4)c4+

+ 2(D − 2)(D − 3)2c5 + 2(D − 2)(D − 3)2c6 + 4(D − 2)2(D − 3)
c7

κ2
−

− 2(D − 2)(D − 3)2c8 − (D − 2)(D − 3)2c9

]
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It is convenient to choose the normalization κ2 = (D − 2)/(D − 3), and then

M2

Q2
= 1 − 2

3D − 7

(
(D − 3)ΩD−2

Q

)2/(D−3)

× (B.16)

×
[
(D − 3)(D − 4)2c1 + (D − 3)(2D2 − 11D + 16)c2+

+2(2D3 − 16D2 + 45D − 44)c3 + 2(D − 3)2(D − 4)c4 + 2(D − 3)3c5+

+2(D − 3)3c6 + 4(D − 3)3c7 − 2(D − 3)3c8 − (D − 3)3c9

]
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